p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.4D8, C24.2D4, C23.4SD16, C23⋊C8.3C2, (C22×C4).9D4, C22.14C4≀C2, C2.C42⋊4C4, C2.4(C42⋊3C4), C23.9D4.3C2, C22.55(C23⋊C4), C23.11D4.1C2, C2.4(C23.D4), C2.9(C22.SD16), C22.18(D4⋊C4), C23.155(C22⋊C4), (C2×C4⋊C4)⋊2C4, (C22×C4).2(C2×C4), (C2×C22⋊C4).83C22, SmallGroup(128,76)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C23 — C2×C22⋊C4 — C23.4D8 |
C1 — C22 — C23 — C2×C22⋊C4 — C23.4D8 |
Generators and relations for C23.4D8
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=dc=cd, f2=a, ab=ba, ac=ca, ad=da, eae-1=abcd, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=ace3 >
Subgroups: 228 in 73 conjugacy classes, 20 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C24, C2.C42, C2.C42, C22⋊C8, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23⋊C8, C23.9D4, C23.11D4, C23.4D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, C23⋊C4, D4⋊C4, C4≀C2, C22.SD16, C23.D4, C42⋊3C4, C23.4D8
Character table of C23.4D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -1 | i | 1 | 1 | i | -i | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | 1 | -i | -1 | 1 | -i | i | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | 1 | i | -1 | 1 | i | -i | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | -1 | -i | 1 | 1 | -i | i | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 1-i | 0 | -1-i | 0 | 0 | 1+i | -1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | -1-i | 0 | 1-i | 0 | 0 | -1+i | 1+i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | -1+i | 0 | 1+i | 0 | 0 | -1-i | 1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 1+i | 0 | -1+i | 0 | 0 | 1-i | -1-i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C42⋊3C4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
(2 29)(3 19)(4 16)(6 25)(7 23)(8 12)(10 22)(11 26)(14 18)(15 30)(20 31)(24 27)
(1 32)(2 10)(3 26)(4 12)(5 28)(6 14)(7 30)(8 16)(9 17)(11 19)(13 21)(15 23)(18 25)(20 27)(22 29)(24 31)
(1 21)(2 22)(3 23)(4 24)(5 17)(6 18)(7 19)(8 20)(9 28)(10 29)(11 30)(12 31)(13 32)(14 25)(15 26)(16 27)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 21)(2 16 29 4)(3 15 19 30)(5 17)(6 12 25 8)(7 11 23 26)(9 13)(10 24 22 27)(14 20 18 31)(28 32)
G:=sub<Sym(32)| (2,29)(3,19)(4,16)(6,25)(7,23)(8,12)(10,22)(11,26)(14,18)(15,30)(20,31)(24,27), (1,32)(2,10)(3,26)(4,12)(5,28)(6,14)(7,30)(8,16)(9,17)(11,19)(13,21)(15,23)(18,25)(20,27)(22,29)(24,31), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21)(2,16,29,4)(3,15,19,30)(5,17)(6,12,25,8)(7,11,23,26)(9,13)(10,24,22,27)(14,20,18,31)(28,32)>;
G:=Group( (2,29)(3,19)(4,16)(6,25)(7,23)(8,12)(10,22)(11,26)(14,18)(15,30)(20,31)(24,27), (1,32)(2,10)(3,26)(4,12)(5,28)(6,14)(7,30)(8,16)(9,17)(11,19)(13,21)(15,23)(18,25)(20,27)(22,29)(24,31), (1,21)(2,22)(3,23)(4,24)(5,17)(6,18)(7,19)(8,20)(9,28)(10,29)(11,30)(12,31)(13,32)(14,25)(15,26)(16,27), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,21)(2,16,29,4)(3,15,19,30)(5,17)(6,12,25,8)(7,11,23,26)(9,13)(10,24,22,27)(14,20,18,31)(28,32) );
G=PermutationGroup([[(2,29),(3,19),(4,16),(6,25),(7,23),(8,12),(10,22),(11,26),(14,18),(15,30),(20,31),(24,27)], [(1,32),(2,10),(3,26),(4,12),(5,28),(6,14),(7,30),(8,16),(9,17),(11,19),(13,21),(15,23),(18,25),(20,27),(22,29),(24,31)], [(1,21),(2,22),(3,23),(4,24),(5,17),(6,18),(7,19),(8,20),(9,28),(10,29),(11,30),(12,31),(13,32),(14,25),(15,26),(16,27)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,21),(2,16,29,4),(3,15,19,30),(5,17),(6,12,25,8),(7,11,23,26),(9,13),(10,24,22,27),(14,20,18,31),(28,32)]])
Matrix representation of C23.4D8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
9 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
2 | 9 | 0 | 0 | 0 | 0 |
0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 2 | 15 |
0 | 0 | 15 | 15 | 2 | 15 |
0 | 0 | 2 | 15 | 2 | 2 |
0 | 0 | 2 | 15 | 15 | 15 |
16 | 0 | 0 | 0 | 0 | 0 |
5 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,9,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[2,0,0,0,0,0,9,15,0,0,0,0,0,0,2,15,2,2,0,0,2,15,15,15,0,0,2,2,2,15,0,0,15,15,2,15],[16,5,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0] >;
C23.4D8 in GAP, Magma, Sage, TeX
C_2^3._4D_8
% in TeX
G:=Group("C2^3.4D8");
// GroupNames label
G:=SmallGroup(128,76);
// by ID
G=gap.SmallGroup(128,76);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,184,794,521,2804]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d*c=c*d,f^2=a,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c*d,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=a*c*e^3>;
// generators/relations
Export